Real-time Deep Neural Networks for internet-enabled arc-fault detection
نویسندگان
چکیده
منابع مشابه
PVANet: Lightweight Deep Neural Networks for Real-time Object Detection
In object detection, reducing computational cost is as important as improving accuracy for most practical usages. This paper proposes a novel network structure, which is an order of magnitude lighter than other state-of-the-art networks while maintaining the accuracy. Based on the basic principle of more layers with less channels, this new deep neural network minimizes its redundancy by adoptin...
متن کاملReal Time Error Detection in Metal Arc Welding Process Using Artificial Neural Networks
Quality assurance in production line demands reliable weld joints. Human made errors is a major cause of faulty production. Promptly Identifying errors in the weld while welding is in progress will decrease the post inspection cost spent on the welding process. Electrical parameters generated during welding, could able to characterize the process efficiently. Parameter values are collected usin...
متن کاملPVANET: Deep but Lightweight Neural Networks for Real-time Object Detection
This paper presents how we can achieve the state-of-the-art accuracy in multicategory object detection task while minimizing the computational cost by adapting and combining recent technical innovations. Following the common pipeline of “CNN feature extraction + region proposal + RoI classification”, we mainly redesign the feature extraction part, since region proposal part is not computational...
متن کاملConvolutional Neural Networks for Real-Time Epileptic Seizure Detection
Epileptic seizures constitute a serious neurological condition for patients and, if untreated, considerably decrease their quality of life. Early and correct diagnosis by semiological seizure analysis provides the main approach to treat and improve the patients’ condition. To obtain reliable and quantifiable information, medical professionals perform seizure detection and subsequent analysis us...
متن کاملDeep Neural Networks to Enable Real-time Multimessenger Astrophysics
Gravitational wave astronomy has set in motion a scientific revolution. To further enhance the science reach of this emergent field, there is a pressing need to increase the depth and speed of the gravitational wave algorithms that have enabled these groundbreaking discoveries. To contribute to this effort, we introduce Deep Filtering, a new highly scalable method for end-to-end time-series sig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Engineering Applications of Artificial Intelligence
سال: 2018
ISSN: 0952-1976
DOI: 10.1016/j.engappai.2018.05.009